Numerical Problems of Electrostatics, Chapter 12 of FSc 2nd Year Physics

12.1 Compare magnitudes of electrical and gravitational forces exerted on an object (mass $=10.0 \mathrm{~g}$, charge $=20.0$ $\mu C)$ by an identical object that is placed $10.0 \mathrm{~cm}$ from the first. $\left(G=6.67 \times 10^{-11} \mathrm{Nm}^{2} \mathrm{~kg}^{-2}\right)$ 
Given Data:
Masses $$ m_{1}=m_{2}=m=10 \mathrm{~g}=0.01 \mathrm{~kg} $$ Charges $$ \begin{aligned} q_{1} & =q_{2}=q=20 \mu C \\ & =20 \times 10^{-6} C \end{aligned} $$ Distance $$ r=10 \mathrm{~cm}=0.1 \mathrm{~m} $$ To Determine: $$ \frac{F_{e}}{F_{g}}=\text { ? } $$ Calculations:
 $$ \begin{aligned} & \frac{F_{e}}{F_{g}}=\frac{\left(k \frac{q_{1} q_{2}}{r^{2}}\right)}{\left(G \frac{m_{1} m_{2}}{r^{2}}\right)} \\ &=\frac{k q_{1} q_{2}}{G m_{1} m_{2}} \\ &=\frac{k q^{2}}{G m^{2}} \\ &=\frac{9 \times 10^{9} \times\left(20 \times 10^{-6}\right)^{2}}{6.67 \times 10^{-11} \times(0.01)^{2}} \\ &=5.4 \times 10^{14} \end{aligned} $$ 12.2 Calculate vectorially the net electrostatic force on $q$ as shown in the figure. \section{Given Data:} $$ \begin{gathered} q_{1}=1 \mu C=1 \times 10^{-6} C \\ q_{2}=-1 \mu C=-1 \times 10^{-6} C \\ q=4 \mu C=4 \times 10^{-6} C \end{gathered} $$ 
To Determine:
 Total Force on $q$ $$ \mathrm{F}=\text { ? } $$ \section{Calculations:} From Fig. $$ \begin{gathered} \tan \theta=\frac{0.8}{0.6} \\ \Rightarrow \theta=\tan ^{-1}\left(\frac{0.8}{0.6}\right)=53^{\circ} \end{gathered} $$ Force Exerted by Charge $q_{1}$ on $q$ : $$ \begin{gathered} F_{1}=k \frac{q q_{1}}{r^{2}} \\ =9 \times 10^{9} \times \frac{4 \times 10^{-6} \times 1 \times 10^{-6}}{(1)^{2}} \\ =36 \times 10^{-3} \mathrm{~N} \end{gathered} $$ Force Exerted by Charge $q_{2}$ on $q$ : $$ \begin{gathered} F_{2}=k \frac{q q_{2}}{r^{2}} \\ =9 \times 10^{9} \times \frac{4 \times 10^{-6} \times 1 \times 10^{-6}}{(1)^{2}} \\ =36 \times 10^{-3} N \end{gathered} $$ Now $$ \begin{gathered} F_{x}=F_{1 x}+F_{2 x} \\ =F_{1} \cos \theta+F_{2} \cos \theta \\ =36 \times 10^{-3} \times \cos 53^{\circ}+36 \times 10^{-3} \times \cos \left(2 \pi-53^{\circ}\right) \\ =0.043 \mathrm{~N} \end{gathered} $$ And $$ \begin{gathered} F_{y}=F_{1 y}+F_{2 y} \\ =F_{1} \sin \theta+F_{2} \sin \theta \\ =36 \times 10^{-3} \times \sin 53^{\circ}+36 \times 10^{-3} \times \sin \left(2 \pi-53^{\circ}\right) \\ =0 \mathrm{~N} \end{gathered} $$ Magnitude of Resultant Force $$ \begin{gathered} F=\sqrt{F_{x}^{2}+F_{y}^{2}} \\ =\sqrt{(0.043)^{2}+(0)^{2}} \\ =0.043 \mathrm{~N} \end{gathered} $$ Direction of Resultant Force $$ \begin{gathered} \tan \theta=\frac{F_{y}}{F_{x}} \\ \Rightarrow \theta=\tan ^{-1}\left(\frac{0}{0.043}\right)=0^{\circ} \end{gathered} $$ (Resultant is along $\mathrm{x}$-axis) $$ \vec{F}=0.043 \hat{\imath} $$ 12.3 A point charge $q=-8.0 \times 10^{-8} C$ is placed at the origin. Calculate electric field at apoint $2.0 \mathrm{~m}$ from the origin on the z-axis. \section{Given Data:} Charge $$ q=-8.0 \times 10^{-8} C $$ Distance $$ r=2 m $$ Direction: z-axis $$ \hat{r}=\hat{k} $$ \section{To Determine:} Electric Field $$ E=? $$ \section{Calculations:} $\overrightarrow{\mathrm{E}}=k \frac{q}{r^{2}} \hat{k}$ $=9 \times 10^{9} \times \frac{\left(-8.0 \times 10^{-8}\right)}{(2)^{2}} \hat{k}$ $=\left(-1.8 \times 10^{2} \hat{k}\right) N C^{-1}$ 12.4 Determine the electric field at the position $\overrightarrow{\mathbf{r}}=(4 \hat{\imath}+3 \hat{\jmath}) m$ caused by a point chargeq $=5.0 \times 10^{-6} C$ placed at origin. \section{Given Data:} Position Vector $$ \overrightarrow{\mathrm{r}}=(4 \hat{\imath}+3 \hat{\jmath}) m $$ Charge $$ q=5.0 \times 10^{-6} \mathrm{C} $$ To Determine: Electric Field $$ \overrightarrow{\mathrm{E}}=? $$ \section{Calculations:} $\overrightarrow{\mathrm{E}}=k \frac{q}{r^{2}} \hat{r}---(1)$ Now $r=|r|=\sqrt{4^{2}+3^{2}}=5$, and $\hat{r}=\frac{\vec{r}}{|r|}=\frac{4 \hat{\imath}+3 \hat{\jmath}}{5}$ Equation (1) becomes: $$ \begin{gathered} \overrightarrow{\mathrm{E}}=k \frac{q}{r^{2}} \hat{r} \\ =9 \times 10^{9} \times \frac{5.0 \times 10^{-6}}{(5)^{2}} \times \frac{4 \hat{\imath}+3 \hat{\jmath}}{5} \\ =360 \times(4 \hat{\imath}+3 \hat{\jmath}) \\ =1440 \hat{\imath}+1080 \hat{\jmath} \end{gathered} $$

Post a Comment

0 Comments